Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.

Identifieur interne : 000531 ( Main/Exploration ); précédent : 000530; suivant : 000532

Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.

Auteurs : Olof Allnér [Suède] ; Nicolas Foloppe ; Lennart Nilsson

Source :

RBID : pubmed:25350574

Descripteurs français

English descriptors

Abstract

Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the α helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the trajectory into 10 replicas with different starting velocities.

DOI: 10.1021/jp506609g
PubMed: 25350574


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.</title>
<author>
<name sortKey="Allner, Olof" sort="Allner, Olof" uniqKey="Allner O" first="Olof" last="Allnér">Olof Allnér</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet , SE-141 83 Huddinge, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet , SE-141 83 Huddinge</wicri:regionArea>
<wicri:noRegion>SE-141 83 Huddinge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Foloppe, Nicolas" sort="Foloppe, Nicolas" uniqKey="Foloppe N" first="Nicolas" last="Foloppe">Nicolas Foloppe</name>
</author>
<author>
<name sortKey="Nilsson, Lennart" sort="Nilsson, Lennart" uniqKey="Nilsson L" first="Lennart" last="Nilsson">Lennart Nilsson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25350574</idno>
<idno type="pmid">25350574</idno>
<idno type="doi">10.1021/jp506609g</idno>
<idno type="wicri:Area/Main/Corpus">000587</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000587</idno>
<idno type="wicri:Area/Main/Curation">000587</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000587</idno>
<idno type="wicri:Area/Main/Exploration">000587</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.</title>
<author>
<name sortKey="Allner, Olof" sort="Allner, Olof" uniqKey="Allner O" first="Olof" last="Allnér">Olof Allnér</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet , SE-141 83 Huddinge, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet , SE-141 83 Huddinge</wicri:regionArea>
<wicri:noRegion>SE-141 83 Huddinge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Foloppe, Nicolas" sort="Foloppe, Nicolas" uniqKey="Foloppe N" first="Nicolas" last="Foloppe">Nicolas Foloppe</name>
</author>
<author>
<name sortKey="Nilsson, Lennart" sort="Nilsson, Lennart" uniqKey="Nilsson L" first="Lennart" last="Nilsson">Lennart Nilsson</name>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry. B</title>
<idno type="eISSN">1520-5207</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Entropy (MeSH)</term>
<term>Escherichia coli (enzymology)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Movement (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Entropie (MeSH)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Mouvement (MeSH)</term>
<term>Simulation de dynamique moléculaire (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Entropy</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Molecular Dynamics Simulation</term>
<term>Movement</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Entropie</term>
<term>Mouvement</term>
<term>Simulation de dynamique moléculaire</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure secondaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the α helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the trajectory into 10 replicas with different starting velocities. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25350574</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>01</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5207</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>119</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry. B</Title>
<ISOAbbreviation>J Phys Chem B</ISOAbbreviation>
</Journal>
<ArticleTitle>Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.</ArticleTitle>
<Pagination>
<MedlinePgn>1114-28</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jp506609g</ELocationID>
<Abstract>
<AbstractText>Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the α helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the trajectory into 10 replicas with different starting velocities. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Allnér</LastName>
<ForeName>Olof</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet , SE-141 83 Huddinge, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Foloppe</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nilsson</LastName>
<ForeName>Lennart</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem B</MedlineTA>
<NlmUniqueID>101157530</NlmUniqueID>
<ISSNLinking>1520-5207</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019277" MajorTopicYN="Y">Entropy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="Y">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009068" MajorTopicYN="Y">Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25350574</ArticleId>
<ArticleId IdType="doi">10.1021/jp506609g</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Foloppe, Nicolas" sort="Foloppe, Nicolas" uniqKey="Foloppe N" first="Nicolas" last="Foloppe">Nicolas Foloppe</name>
<name sortKey="Nilsson, Lennart" sort="Nilsson, Lennart" uniqKey="Nilsson L" first="Lennart" last="Nilsson">Lennart Nilsson</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Allner, Olof" sort="Allner, Olof" uniqKey="Allner O" first="Olof" last="Allnér">Olof Allnér</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000531 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000531 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25350574
   |texte=   Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25350574" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020